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Starting with a quantum logic (a tr-orthomodular poset) L, a set of probabilistically 
motivated axioms is suggested to identify L with a standard quantum logic L(H) 
of all closed linear subspaces of a complex, separable, infinite-dimensional Hilbert 
space. Attention is paid to recent results in this field. 

In the framework of  the axiomatic approach known as the "quantum 
logic approach" it is usually assumed that a "quantum logic," that is, a 
mathematical representation of the set of  all experimentally verifiable proposi- 
tions about a physical system (equivalently, the set of all random events of 
a physical experiment), is a tr-orthomodular poset with a full set of states 
(i.e., generalized probability measures). Let us introduce the corresponding 
definitions. 

Definition 1. A tr-orthomodular pose t  (tr-OMP) is a partially ordered 
set (L, <--) with a smallest element 0 and a greatest element 1 with the 
following properties: 

(1) L carries a bijective map a ~ a'  such that for every a, b e L, a" 
= a , a - - < b : : ~ a ' - - > b ' , a v a '  = l, a A a '  = 0 (in the sense that 
the join a v a '  and the meet a A a '  both exist and have the 
value indicated). 

(2) Given any (finite or countably infinite) sequence (ai) C L, ai <-- 
aj ,  whenever i :/: j ,  the join v ai exists in L. 

(3) L is orthomodular: a <- b ~ b = a v (b A a') .  

If property (2) holds only for finite sequences, we say that L is an 
orthomodular  poset  (OMP). Two elements a, b in an OMP L are called 
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orthogonal (written a _1_ b) if a ~ b ' .  A family (ai) is orthogonal if ai _L aj 
whenever i v~ j. 

Definition 2. A (~-additive) state on a cr-OMP L is a map m: L --~ [0, 
1 ] such that m( l )  = 1, and for any orthogonal sequence (ai), m(v  ai) = Z m(ai). 

Let 57 be a family of  states on L. We say that 5? is full  if m(a) <-- m(b) 
Vm e 5? ~ a --< b. We say that 5? is or-convex if for any sequence (mi) C 
5? and any corresponding sequence t; of  nonnegative real numbers of  sum 
one, m := Z timi ~ 5?. The state m is called a convex combination (or a 
mixture) of  the states (mi) with weights (t;). A state is pure if it is not a 
convex combination of  two states different from itself. 

Mackey (1963) proposes a probabilistically motivated axiom system for 
nonrelativistic quantum mechanics. Let us briefly recall his well-known 
axioms. 

The basic elements are two abstract sets ~ and 5? and the family of  
Borel subsets of  the real numbers. The axioms are expressed in terms of a 
postulated function p(A, oL, X)  = s e [0, 1] that assigns a real number to 
each triple A ~ 0, ct e 57, and a Borel set X. The elements A • ~ are to 
be thought of  as observables (physical quantities), the e~ • 5? as states, and 
the real number p(A, oL, X)  as the probability that a measurement of  the 
observable A on a system in the state ~ yields a value in the Borel set X. 
The first six axioms run as follows. 

Axiom I. For any observable A and any state et, p(A, or, O) = O, p(A, ct, 
R) = 1, and p(A, or, .) is countably additive on the Borel sets. Thus, with A 
and ~ fixed, p(A, e~, .) is a probability measure on the Borel sets. 

Axiom II. I f  p(A, et, X) = p(B, o~, X) for all states o~ and all Borel sets 
X, then A = B. Likewise, if  p(A, or, X) = p(A, f3, X) for all observables A 
and all X, then e~ = 13. 

Axiom III. For any observable A and any Borel measurable function f,  
there is another observable B such that p(B, or, X) = p(A, eqf - I (X) )  for every 
state e~ and every Borel set X. 

Axiom II shows that B in Axiom III is uniquely defined by A; we set 
B = f(A).  Thus this axiom provides for the construction of  functions of  
observables. Axiom III postulates that the set ~ of observable is closed under 
a functional calculus based on Borel functions. A particular role is played 
by characteristic functions ×F of  Borel sets F. Mackey calls these observables 
"questions." Another characterization of questions is as follows: an observable 
A is a question if for every state c~ • 57, its associated probability measure 
p(A, a,  .) equals I on the two-element set {0, 1 }. Thus, a measurement of  
a question Q in any state c~ yields either a value 1 or 0; the probability that 
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the measured value will be 1 is s = p(Q, cx, {1 }); the probability that the 
result of measurement will be 0 is 1 - s. 

Axiom IV. If at ,  et2 . . . .  is a finite or countably infinite set of  members 
of 50 and ti is a corresponding set of positive real numbers of sum 1, then 
there is a state a ~ 50 such that p(A, et X) = ~ tip(A, or, X) for all observables 
A ~ (~ and all Borel sets X. 

Axiom IV implies that the set 5 0 of states is e-convex.  The existence 
of pure states is not postulated. 

We denote the set of questions by ~ ,  we have ~ C ~. The question Q 
= ×F(A) depends on the observable A and on the Borel set F, Q = Q(A, F). 
Every observable A can be described by the set of  questions Q(A, F), F- 
Borel set, which correspond to the question: "Is the value of the observable 
A in the set F?"  Two special questions are I = Q(A, R) and O = Q(A, 0); 
both are independent of the observable A. If et is any state, we define a 
function m,~: ~ ---> [0, 1] by m¢,(Q) = p(Q, et, {1 }). Thus m,(Q) is the 
probability that a measurement of the question Q on the system in state ct 
yields the value 1. Axiom II implies these two facts: if m~,(Ql) = m¢,(Q2) for 
all states et, then Qj = Q2; and if ms(Q) = ma(Q) for all questions Q, then 
et = 13. Hence the map ct ~ m~, is one-to-one, and we may identify the set 
S ° of  states with the family of  functions m,~. We shall denote this set of 
functions also by 50. So we have singled out a special family ~ of  observables, 
the questions, and have identified the states 50 with certain [0, l]-valued 
functions on these observables. Attention now focuses on the system (~,  50). 
The functions ms: ~ ---> [0, 1] are used to give ~ the structure of  a partially 
ordered set: Qt -< Q2 iff m~(Qi) <- m~(Q2) for every et. Questions I and O 
play the role of the greatest and the smallest element, respectively. 

Axiom V. Let (Qi) be a sequence of questions such that m~,(Qi) + m~,(Qj) 
--< 1 whenever i ~ j for every o t e  50. Then there is a question Q such that, 
for every et E 50, me(Q) = ~ m~(Qi). 

Axiom VI. For any Q 4: O there is ct E 50 such that m,~(Q) = 1. 

From Axioms I - V  the following algebraic structure can be derived: the 
set ~ is a cr-orthomodular poset, and 50 is a full set of states on ~ (Beltrametti 
and Cassinelli, 1981; PtS.k and Pulmannovfi, 1991; and references therein). 
Axiom VI implies that 9 0 is unital, in addition. 

Mackey's Axiom VII reads as follows: 

Axiom VII. The partially ordered set of all questions in quantum mechan- 
ics is isomorphic to the partially ordered set of all closed subspaces of  a 
separable, infinite-dimensional Hilbert space. 
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Mackey introduced this axiom because "Almost all modern quantum 
mechanics is based implicitly or explicitly on the following assumption which 
we shall state as an axiom (Axiom VII)," and he comments further, "This 
axiom has a rather different character from axioms I through VI. These had 
some degree of physical naturalness and plausibility. Axiom VII seems 
entirely ad hoc. . .  Ideally one would like to have a list of physically plausible 
assumptions from which one could deduce axiom VII." 

Since then, many attempts have been undertaken to find simple and 
physically plausible assumptions which replace Axiom VII and lead naturally 
to a characterization of the Hilbert-space-derived logics (see, e.g., Birkhoff 
and von Neumann, 1936; Zieler, 1961, 1966; Piron, 1964; 1976; Amemiya 
and Araki, 1966/67; MacLaren, 1964; Varadarajan, 1968; Gudder and Piron, 
1971; Maczyr~ski, 1973; Cirelli and Cotta-Ramusino, 1973; Bugajska and 
Bugaski, 1972; Wilbur, 1977). Usually, this may be viewed as a two-stage 
process. First, as suggested by the original work by Birkhoff and von Neumann 
(1936), there are hypotheses relating the structure of the logic to the finite- 
dimensional projective geometries. Thus we obtain a projective logic which 
can be coordinatized. Then assumptions must be found which relate the 
coordinatizing division ring to one of the "classical" fields, namely the real 
field R, the complex field C, or the quaterionic field H. It was long believed 
that these three are the only possible examples of coordinatizing rings for 
projective logics, but a nonclassical example of an "orthomodular space" 
was found by Keller (1980). 

Recently, two papers appeared suggesting a list of axioms replacing 
Mackey's Axiom VII (Pulmannov~i, 1994; Holland, 1995). Although these 
two papers are completely independent, the axioms are in essentials the same. 
This coincidence is not accidental, it is rather a confirmation that the choice 
of axioms is at present the best possible. The only exception is that in 
Holland's paper, a very recent result by Solar (1995) is used, which replaces 
Wilbur's notion of a probabilistic projective logic used in Pulmannov~i (1994). 
Namely, Solar has recently proved that an orthomodular space that has an 
infinite orthonormal sequence is a real, complex, or quaternionic Hilbert 
space. 

We will now introduce a list of axioms which make a couple (L, ~), 
where L is a tr-orthomodular poset and ~ is a or-convex full set of states (a 
situation to which we can arrive using Axioms I-V), a projective logic (or 
an orthomodular space), to which Piron's (1964) coordinatization theorem 
can be applied. Although in Mackey's axioms the existence of pure states is 
not explicitly required, pure states play an important role in quantum mechan- 
ics, and hence we will assume that there is a set P of pure states (extreme 
points of 5e), subject to the following requirements. We follow essentially 
Pulmannov~ (1994). 
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Our first axiom specifies the dimension of our system. 

A1 (Separability). Every subset K of L consisting of mutually orthogonal 
nonzero elements is at most countable, and there exists at least one such 
infinite set. 

The second axiom is a strengthening of Axiom VI. 

A2 (Unitality of  P). For each b e L, b ~ 0, there exists s e P such 
that s(b) = 1. 

The third axiom concerns the so-called Jauch-Piron property, which 
was first formulated by Zierler (1961) in a lattice form, and for posets in 
(Bugajska and Bugajski, 1972). It was also required by Jauch and Piron as 
a natural property of quantum states (Jauch, 1968; Piron, 1976; Jauch and 
Piron, 1969; see also Rtittimann, 1977; Pt~ik and Pulmannov~i, 1991). 

A3 (Jauch-Piron Property). For each s E 5 o and a, b E L satisfying 
s(a) = s(b) = 1 there exists c ~ L such that c --< a, c --< b, and s(c) = 1. 

The following axiom is in agreement with the assumption that pure 
states provide us maximal information about a physical system, and this 
information is given by the set of all "almost sure" events in this state. 

A4 (Characterization o f  Pure States by Almost Sure Events). For any p, 
s ~ P , p - ~ ( { l } ) C  s - l ( { l } ) ~ p  = s. 

The following axiom is a formulation of  a superposition principle, which 
is a specific property of  quantum systems distinguishing them from classical 
ones. Its importance was emphasized by Dirac (1980). In the traditional 
Hilbert space approach to quantum mechanics, the formulation of  the superpo- 
sition principle is based on the linear structure of  the state space. Namely, pure 
states are represented by unit vectors in a Hilbert space, and the superposition 
principle corresponds to the fact that any normalized linear combination of  
vectors represents a pure state. Since in our case there is no a priori linear 
structure of  the set 5O, we will use Varadarajan's (1968) definition of a 
superposition of  states. A state So is called a superposition of  states in a set 
Q c 5O if s(a) = 1 (a E L) for all s e Q implies so(a) = 1. We will be 
interested only in pure superpositions of pure states: let S(a) = 1 (S C P, a 

L) mean that s(a) = 1 for all s e S, and define S = {r E P: S(a) = 1 
r(a) = 1}. That is, S is the set of  all pure superpositions of S. This 

formulation agrees, in the Hilbert space approach, with the usual notion of 
a superposition. Our formulation of the superposition principle is the following 
(PtS.k and Pulmannov~i, 199 I). 

A5 (Superposition Principle). To every p, q E P, p ~ q, there is r E 
{ p , q } , r  v~ p, r g= q. 
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Our next axiom implies a covering property. The following simple form 
will be sufficient. 

A6 (Atomic Exchange Property). If  p, q, r are mutually different elements 
of  P and p • {q, r}, then q • {p, r}. 

Under the assumptions A I - A 6 ,  L is a complete, irreducible, atomic 
orthomodular lattice with covering property [see Pulmannov~i (1994) for the 
proof]. Moreover, f o r e v e r y s  • 50 , the s e t s - l { 1 }  = {a • L: s(a)= l} has 
an infimum a.~ in L; the element a~ is called a carrier (or a support) of  the 
state s. It follows that Piron's coordinatization theorem can be applied. 
Namely, there exist a division ring D with an involutive antiautomorphism 
0, a (left) vector space V over D, and a definite 0 bilinear Hermitian form 
(., .) on V X V such that L is orthoisomorphic with the lattice ~(V) of all 
orthoclosed subspaces of  V (recall that a linear subspace M of V is orthoclosed 
if M = M i x  , and M ± = {x • V." (x, y) = 0 for all y • M}). Owing to 
orthomodularity of  L, the lattice ~(V)  satisfies the Hilbertian property M + 
M ± = V for all M • ~(V) [where + means taking the linear span; see 
Maeda and Maeda (1970)]. A four-tuple (D, 0, V, (., .)) with above properties 
is called an orthomodular space. 

Moreover, L[and  hence also ~(V)] is orthoisomorphic with the set ~ ( P )  
• = {S C P: S = S} of all subsets of  P which are closed under the formations 
of  pure superpositions; meets in ~ ( P )  coincide with set-theoretic intersections, 
while suprema are defined by vSi = USi, and orthocomplementation is 
defined by S ± = {q • P: q 1 s for all s • S}, where p ± q if the supports 
of  p and q are orthogonal. A state p is a superposition of states q, r iff for 
the supports we have ap <-- aq V a r. 

It remains to specify the nature of  the division ring D. We need axioms 
which make D one of  the classical division rings R, C, or H.  In Pulmannov~ 
(1994) two of Wilbur's (1977) axioms are used which make L a so-called 
probabilistic logic. These two axioms express minimal conditions which are 
necessary to consider vectors in V as sources of  states. In the standard 
approach, the famous Gleason theorem asserts that such a situation naturally 
arises. In our situation, the atoms in ~(V)  are in one-to-one correspondence 
with the pure states in P. Therefore, the elements of  V deserve consideration 
as possible sources of  states. The following axiom, which is formulated 
independently on the representing space, guarantees that for each x • V there 
i s a d  • D w i t h ( d x ,  dx) = _1.  

A7 (Normalizability). For each f • F := {d • D: 0(d) = d} there is 
a d • D w i t h f  = +_dO(d). 

The second of Wilbur's axioms is justified by the fact that if (x, x) is 
to be a candidate for probability, then at least it should behave as a scalar 
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and multiply commutatively in D. Its formulation is also independent of the 
underlying space V. 

A8 (Scalar Behavior o f  Probabilities). F is a subset of the center C of D. 

It was proved in Wilbur (1977) that if (D, 0, V, (., .)) is an infinite- 
dimensional orthomodular space satisfying A7 and A8, then D is one of  R, 
C, o r H .  

Axioms A7 and A8 can be replaced by another axiom, using Sol~r's 
(1995) theorem. Such an axiom, based on this very recent result, was formu- 
lated in Holland (1995). In Sol~r's theorem, one may relax the assumption 
that (D, 0, V, (., .)) has an infinite orthonormal sequence to the assumption 
that V contains an orthogonal sequence {el: i e N} of  nonzero vectors such 
that (el, el) = (ej, ej) for all i, j. If that is the case, then setting f = (el, el), 
we define a new involution ~/ on D by ~/(d) = fO(d) f  -t and a new form 
[., .] on V by [., .] = (., . ) f-  i. A direct calculation shows that the new form 
[., .] is Hermitian with respect to the new involution ~/and is also orthomodular 
because it induces the same I map. The sequence {el} is now orthonormal 
in (D, % V, [., .]), so by Soi~r's theorem (D, ~/) is R, C, or H.  B u t f  = 3'(f), 
so f is a nonzero real number. Thus "y = 0, so (D, 0) is R, C, or H. 

The weakened form of  Sol~r's theorem was used by Holland (1995) to 
formulate his Axiom D: 

Axiom D (Ample Unitary Group). Given any two orthogonal pure states 
a, b of L, there is a unitary operator U such that U(a) = b. 

Since Axiom A, Axiom B, and Axiom C in Holland (1995) are essentially 
the same as our Axioms A l - A 6 ,  2 and lead to the same structure of  L, namely 
that L is an irreducible, complete, atomic orthomodular lattice with covering 
property, and, moreover, pure states are in one-to-one correspondence with 
the atoms of L which are their supports, we can add Axiom D to our Axioms 
A 1 - A 6  to arrive at a classical Hilbert space based on R, C, or H.  Namely, 
by a unitary operator we mean a bijective linear map U of  V into itself that 
preserves the form (., .), U(ctx + 13y) = etU(x) + f3U(y), Vet, (3 • D, Vx, 
y • V, (U(x), U(y)) = (x, y) Vx, y • V. Now the pure states a, b are in one- 
to-one correspondence with atoms in ~(V), and so a = De and b = D f f o r  
some orthogonal nonzero vectors e, f • V, so for the operator U we shall 

-'Those axioms are formulated as follows: A M o m  A:  (l)  The logic ~£ is separable, i.e., any 
orthogonal family of nonzero elements in .~ is at most countable. (2) If re(a) = rn(b) = 0 
for some a, b • ,,~ and m • 5?, then there exists c • ,~', c -> a, c >- b with re(c) = O. A x i o m  
B: (I)  Given any nonzero question a e ~ ,  there is a pure state m e ~? with re(a) = I. (2) 
If m is a pure state with support a • ~ ,  then m is the only state, pure or not, with re(a) = 
I. A x i o m  C: (1) Given two different pure states (atoms) a and b, there is at least one other 
pure state c, c ¢: a, c ~ b, that is a superposition of  a and b. (2) If the pure state c is a 
superposition of the distinct pure states a and b, then a is a superposition of  b and c. 
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have U(e) = af ,  for some a E D. Then (e, e) = (U(e), U(e)) = et(f, f )O(a).  
From this it follows that there exists in V an infinite orthogonal sequence 
{el: i ~ N} such that (el, el) = (ej, ej} for all i , j ,  and Sol&'s theorem applies. 

In quantum mechanics, based on the standard von Neumann (1955) 
approach complex Hilbertian lattices play a central role. Mayet and Pulman- 
novfi (1994) found a property which allows one to distinguish complex 
Hilbertian lattices among the classical ones. Based on this, a physically 
motivated axiom was suggested in Pulmannovfi (1994) which allows one to 
arrive at the lattice of closed subspaces of a complex Hilbert space. 

A nearly orthosymmetric ortholattice (NOSOL) (Mayet and Pulman- 
novL 1994) is an ortholattice L equipped with a binary operation U satisfying 
the following axioms [where U(a, b) is denoted by U~(b)]: 

(S1) For every a e L, U,, is an automorphism of (L, U): 
(a) U,,(x ±) = U~(x) ". 
(b) Ua(x ^ y) = Ua(X ) A Ua(y). 
(c) U~(I) = 1. 
(d) Uo o Ub = Uuo~b~ o uo. 

($2) x v U~(b) = x v qba(b ), where ~ba(b) = a A (a I v b). 
( S 3 )  a _1_ b ~ U~ o Ub = U~v~. 

If (L, U) is a NOSOL, then L is orthomodular. Moreover, if L is an 
atomistic ortholattice with covering property, then ($2) is isomorphic to 

Ua(x) = x iff aCx 

where aCx means that a = (a A X) V (a ^ x ±) (Mayet and Pulmannov~i, 1994). 
Let us consider an orthomodular space (D, 0, V, (., .)). Let C(D) denote 

the center of D and C 1 ( D ) =  {h ~ C(D): h 0 ( k ) =  1}. Let X e ~(V), by 
the Hilbertian property, Vx  E V, x = xl + x2, x, e X, x2 ~ X ". For any h 

CtX),  define a mapping crxx: V --+ V, cr×.x(xl + x2) = xn + kx2. The 
mapping crx~ is linear and preserves (., .), hence crx.x(Y) = {Grx.x(y): y e Y} 
E ~(V) whenever Y ~ ~(V). Define a binary operation on ,~(V) by Ux(X, 
Y) + Crx.x(Y). It has been proved in Mayet and Pulmannov~i (1994) that, for 
every h e CI(D), h :/: 1, (~(V), Ux) is a NOSOL. Moreover, if dim V --> 3 
and (~(I0,  U) is a NOSOL, then there is a X ~ CI(D), h :~ 1, such that U 

U~o 
Based on the above facts, the following characterization of complex 

Hilbert spaces can be formulated: Let p be any odd number -> 3 and let (L, 
U) be a NOSOL. Consider the equation 
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UP = idL, V a  ~ L (C) 

Let L = ~(V),  V over R, C, or H.  

(a) If  D = C, (C) holds for some NOSOL (L, U). 
(b) If  D = R or D = H,  (C) does not hold in any NOSOL (L, U). 

Indeed, according to Stone's theorem, any self-adjoint operator A on a 
complex Hilbert space H gives rise to a one-parameter strongly continuous 
unitary group t ~ e iAt, t e R, and every such group is generated in this way 
by a self-adjoint operator. Let P be a projection and put A = I - P. We obtain 

(it(I P))" 
e "~-p~ = I + 

. = l  n! 

(it)" 
= I +  ( t -  p) 

r l = l  

= l + (e i ' -  1 ) ( 1 -  P) 

Define Uexx = eit(I-P)x, x E H, k = e it. We obtain Uehx = xl + kx2 whenever 
x = xt + x2 with xl E P(H),  x2 ~ (I - P) (H) .  Accordingly, e i'(t-e), for a 
suitable t ~ R, induces a NOSOL structure on ~ (H) .  Consider e 2~(t-t'~, r 
E R. For r = 1/n, n E N, n # I, we obtain a NOSOL. If  r = l/p, p >- 3 
is odd, (C) is satisfied. 

On the other hand, in R and H,  C~(D) = {1, - 1  }, which entails that 
(C) cannot be satisfied. 

Let L = ~(V)  be the logic of  an infinite-dimensional orthomodular 
space. For X ~ L and r ~ R, let r.X denote the observable such that r .X({r})  
= X, r. X({0}) = X l The following axiom is suggested in Pulmannov~i (1994). 

A9 (Weak Form o f  Stone's Theorem). To every observable r .X on ~(V)  
[r ~ R, X ~ ~(V)]  there exists an automorphism U~ ) of  ~(V)  satisfying the 
following conditions: 

(i) U~ r) = id iff either X E {{0}, V} (r  ~ R is arbitrary) or r is an 
integer (X is arbitrary). 

(ii) I f  U~ ) ~ id, then U~r)(Y) = Y iff XCY, Y E L. 
(iii) X _L Y :=:, U~( ~ o U ~  ~ = U~;)+r, V r  E R. 
(iv) U ~  o U~) = U~+S), Vt,  s E R, V X  ~ L. 

It can be proved, using similar arguments as in the proof of  Proposition 
9 in Mayet and Pulmannov~i (1994) that if r is not an integer, then U tr) 
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corresponds to U~, for a suitable h, and so (L, U ~r)) is a NOSOL. In particular, 
if r = 1/p and p -> 3 is odd, then (i) and (iv) imply that equation (C) is satisfied. 3 

In conclusion, Axioms A 1 - A 8  (or, equivalently, Axioms A 1 - A 6  and 
Axiom D) replace Mackey's Axiom VII, and we arrive at a logic based on 
a classical (real, complex, or quaternionic) Hilbert space. If in addition Axiom 
A9 is satisfied, we obtain the standard complex Hilbert space logic. 
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